Pausing guides RNA folding to populate transiently stable RNA structures for riboswitch-based transcription regulation

نویسندگان

  • Hannah Steinert
  • Florian Sochor
  • Anna Wacker
  • Janina Buck
  • Christina Helmling
  • Fabian Hiller
  • Sara Keyhani
  • Jonas Noeske
  • Steffen Grimm
  • Martin M Rudolph
  • Heiko Keller
  • Rachel Anne Mooney
  • Robert Landick
  • Beatrix Suess
  • Boris Fürtig
  • Jens Wöhnert
  • Harald Schwalbe
چکیده

In bacteria, the regulation of gene expression by cis-acting transcriptional riboswitches located in the 5'-untranslated regions of messenger RNA requires the temporal synchronization of RNA synthesis and ligand binding-dependent conformational refolding. Ligand binding to the aptamer domain of the riboswitch induces premature termination of the mRNA synthesis of ligand-associated genes due to the coupled formation of 3'-structural elements acting as terminators. To date, there has been no high resolution structural description of the concerted process of synthesis and ligand-induced restructuring of the regulatory RNA element. Here, we show that for the guanine-sensing xpt-pbuX riboswitch from Bacillus subtilis, the conformation of the full-length transcripts is static: it exclusively populates the functional off-state but cannot switch to the on-state, regardless of the presence or absence of ligand. We show that only the combined matching of transcription rates and ligand binding enables transcription intermediates to undergo ligand-dependent conformational refolding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch.

Riboswitches are cis-acting elements that regulate gene expression by affecting transcriptional termination or translational initiation in response to binding of a metabolite. A typical riboswitch is made of an upstream aptamer domain and a downstream expression platform. Both domains participate in the folding and structural rearrangement in the absence or presence of its cognate metabolite. R...

متن کامل

Linking aptamer‐ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design

The power of riboswitches in regulation of bacterial metabolism derives from coupling of two characteristics: recognition and folding. Riboswitches contain aptamers, which function as biosensors. Upon detection of the signaling molecule, the riboswitch transduces the signal into a genetic decision. The genetic decision is coupled to refolding of the expression platform, which is distinct from, ...

متن کامل

RNA Polymerase Accommodates a Pause RNA Hairpin by Global Conformational Rearrangements that Prolong Pausing.

Sequence-specific pausing by RNA polymerase (RNAP) during transcription plays crucial and diverse roles in gene expression. In bacteria, RNA structures are thought to fold within the RNA exit channel of the RNAP and can increase pause lifetimes significantly. The biophysical mechanism of pausing is uncertain. We used single-particle cryo-EM to determine structures of paused complexes, including...

متن کامل

Folding of noncoding RNAs during transcription facilitated by pausing-induced nonnative structures.

RNA folding in the cell occurs during transcription. Expedient RNA folding must avoid the formation of undesirable structures as the nascent RNA emerges from the RNA polymerase. We show that efficient folding during transcription of three conserved noncoding RNAs from Escherichia coli, RNase P RNA, signal-recognition particle RNA, and tmRNA is facilitated by their cognate polymerase pausing at ...

متن کامل

Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases.

RNA polymerase pausing represents an important mechanism of transcriptional regulation. In this study, we use a single-molecule transcription assay to investigate the effect of template base-pair composition on pausing by RNA polymerase II and the evolutionarily distinct mitochondrial polymerase Rpo41. For both enzymes, pauses are shorter and less frequent on GC-rich templates. Significantly, i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017